Normal binomials over algebraic number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Algebraic Number Fields.

Introduction. In this paper we present a detailed account of the results recently published in the Proceedings of the National Academy of Sciences [29 Our theory is an attempt to generalize the results of the classical class field theory to arbitrary normal fields. In the last analysis, the theory of cyclic extensions Z of an algebraic number field k can be described in terms of cyclic algebras...

متن کامل

Permutation Binomials over Finite Fields

We prove that if xm + axn permutes the prime field Fp, where m > n > 0 and a ∈ Fp, then gcd(m − n, p − 1) > √ p − 1. Conversely, we prove that if q ≥ 4 and m > n > 0 are fixed and satisfy gcd(m − n, q − 1) > 2q(log log q)/ log q, then there exist permutation binomials over Fq of the form xm + axn if and only if gcd(m,n, q − 1) = 1.

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

Algebraic number fields

By an algebraic number field we mean a subfield of the algebraic numbers, or an isomorphic copy of such a field. Here we consider questions related to the complexity of determining isomorphism between algebraic number fields. We characterize the algebraic number fields with computable copies. For computable algebraic number fields, we give the complexity of the index sets. We show that the isom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1980

ISSN: 0022-314X

DOI: 10.1016/0022-314x(80)90023-2